A Mean-Risk Model for the Stochastic Traffic Assignment Problem

نویسنده

  • E. Nikolova
چکیده

Heavy and uncertain traffic conditions exacerbate the commuting experience of millions of people across the globe. When planning important trips, commuters typically add an extra buffer to the expected trip duration to ensure on-time arrival. Motivated by this, we propose a new traffic assignment model that takes into account the stochastic nature of travel times. Our model extends the traditional model of Wardrop competition when uncertainty is present in the network. The focus is on strategic risk-averse users who capture the tradeoff between travel times and their variability in a mean-standard deviation (mean-stdev) objective, defined as the mean travel time plus a risk-aversion factor times the standard deviation of travel time along a path. We consider both infinitesimal users, leading to a nonatomic game, and atomic users, leading to a discrete finite game. We establish conditions that characterize an equilibrium traffic assignment and find when it exists. The main challenge is posed by the users’ risk aversion, since the mean-stdev objective is nonconvex and nonseparable, meaning that a path cannot be split as a sum of edge costs. As a result, even an individual user’s subproblem—a stochastic shortest path problem—is a nonconvex optimization problem for which no polynomial time algorithms are known. In turn, the mathematical structure of the traffic assignment model with stochastic travel times is fundamentally different from the deterministic counterpart. In particular, an equilibrium characterization requires exponentially many variables, one for each path in the network, since an edge-flow has multiple possible path-flow decompositions that are not equivalent. Because of this, characterizing the equilibrium and the socially-optimal assignment, which minimizes the total user cost, is more challenging than in the traditional deterministic setting. Nevertheless, we prove that both can be encoded by a representation with just polynomially-many paths. Finally, for the case of uncertainty parameters that are independent from edge loads, we show that although an equilibrium assignment results in a total user cost that is higher than that of the socially-optimal one, it is not higher than the analogous ratio in the deterministic setting. In other words, uncertainty does not further degrade the system performance in addition to strategic user behavior alone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Calibration and Application of Logit-Based Stochastic Traffic Assignment Models

There is a growing recognition that discrete choice models are capable of providing a more realistic picture of route choice behavior. In particular, influential factors other than travel time that are found to affect the choice of route trigger the application of random utility models in the route choice literature. This paper focuses on path-based, logit-type stochastic route choice models, i...

متن کامل

Different Network Performance Measures in a Multi-Objective Traffic Assignment Problem

Traffic assignment algorithms are used to determine possible use of paths between origin-destination pairs and predict traffic flow in network links. One of the main deficiencies of ordinary traffic assignment methods is that in most of them one measure (mostly travel time) is usually included in objective function and other effective performance measures in traffic assignment are not considere...

متن کامل

A Mean-Risk Model for the Traffic Assignment Problem with Stochastic Travel Times

Heavy and uncertain traffic conditions exacerbate the commuting experience of millions of people across the globe. When planning important trips, commuters typically add an extra buffer to the expected trip duration to ensure on-time arrival. Motivated by this, we propose a new traffic assignment model that takes into account the stochastic nature of travel times. Our model extends the traditio...

متن کامل

Traffic Condition Detection in Freeway by using Autocorrelation of Density and Flow

Traffic conditions vary over time, and therefore, traffic behavior should be modeled as a stochastic process. In this study, a probabilistic approach utilizing Autocorrelation is proposed to model the stochastic variation of traffic conditions, and subsequently, predict the traffic conditions. Using autocorrelation of the time series samples of density and flow which are collected from segments...

متن کامل

Probit-Based Traffic Assignment: A Comparative Study between Link-Based Simulation Algorithm and Path-Based Assignment and Generalization to Random-Coefficient Approach

Probabilistic approach of traffic assignment has been primarily developed to provide a more realistic and flexible theoretical framework to represent traveler’s route choice behavior in a transportation network. The problem of path overlapping in network modelling has been one of the main issues to be tackled. Due to its flexible covariance structure, probit model can adequately address the pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011